Priority Research Direction: Exascale Work Environments

Key emerging challenges

- •Computational science requires attention to computational concerns, leaving less time for science
- •Compute, storage, simulations and analyses are increasing in complexity; the trend above worsens
- Provenance is often lost due to disparate execution and storage strategies
- •Collaboration around decentralized and distributed resources and data is difficult at best

Potential impact on software/systems

- •Facilitates execution on diverse compute resources
- •Centralized repository of scientific data will improve individual and team access
- Data movement can be optimized independent of users
- •Migration to future compute and storage resources will be simplified

Summary of research direction

- •Design an environment to simplify development, simulation, and analysis on increasingly complex compute and storage resources
- •Develop methods for analysis of exascale datasets: mining, statistical analysis, visualization, metadata
- Automate provenance tracking
- Seamlessly accessible from anywhere (laboratory, home, mobile)

Potential impact on science communities or DOE capabilities

- •Scientists will devote more of their time to science codes, less to computational concerns
- •Basic analysis will be included; domain-specific analysis can be integrated
- •Provenance tracking will improve understanding of results and research trajectories
- •Will accelerate time to discovery and support publishing of results